

Skills for impactful data visualisation

Andrew Perfors

School of Psychological Sciences Complex Human Data Hub 2022 ACNS ECR Webinar

Example 1. Stopping a cholera outbreak

Person	Age	Occupation	Family size	Address	Health	Cholera?
Mary Smith	12	child	8	7 Cross St	good	yes
Robert Plank	48	unemployed	5	12 King St	fair	yes
John WIlliams	7	child	12	16 Main St	good	no
Henry Locke	23	dockworker	9	24 King St	poor	yes
Elizabeth Gates	3	child	5	32 Banks St	poor	no
Jane Potter	29	homemaker	7	35 Cross St	fair	no

Data visualisation is discovery

John Snow, 1854

Data visualisation is discovery

Example 2. Covid and vaccination

More vaccinated people at risk of severe covid?

Severe COVID Cases in Israel

... but not at all when you break it down by age

Source: https://marvpatcampbell.substack.com/p/covid-and-simpsons-paradox-why-so_published 19 August 2021, accessed 3 Dec 2021. Source: https://marvpatcampbell.substack.com/p/covid-and-simpsons-paradox-why-so_published 19 August 2021, accessed 3 Dec 2021.

More people were vaccinated in the first place AND

The most vulnerable (i.e., oldest) were more likely to be vaccinated

Data visualisation is discovery

A common workflow

Data visualisation is discovery

A common workflow

A good workflow

Skills for good data visualisation

Technical

- Good tools combine ease & power
- In R, ggplot & tidyverse are great

Active, critical, aesthetic

- Guided by scientific questions
- Some tips to get you started

Example: Zombie apocalypse

5 years ago, zombies started taking over the world...

How dangerous are they?

Are we making any headway?

Example: Zombie apocalypse

At great peril to our lives, we have started tracking them, and now have five years of data

🖻 zombie.Rmd 🗙 🔲 d 🗙					
🗘 🖒 🖅 Filter					
^	name 🌻	year	÷	zombie 🗦	kills 🗘
1	hI3NTxaE		1	imp	6
2	DleBHkKd		1	imp	7
3	kleNVLTK		1	imp	8
4	bnkvZwrW		1	imp	7
5	qbRuQwrs		1	imp	3
6	m3mad4dm		1	imp	7
7	2m82rLXH		1	imp	3
8	9h2uaChd		1	imp	6
9	gFJ9R5d7		1	imp	5
10	7320R5lf		1	imp	6

Tidyverse allows you to easily manipulate data

	year	mnKills	sdKills	n	sderrKills
	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>
1	1	14.1	12.0	30	2.18
2	2	12.0	7.43	30	1.36
3	3	14.8	7.58	30	1.38
4	4	14.5	9.57	30	1.75
5	5	15.1	14.6	30	2.67

R for Data Science: https://r4ds.had.co.nz/

ggplot is a package that lets you draw figures

A grammar

- Combine & reuse smaller parts in a structured way
- Of graphics
 - Like a painter
 - Figure is built by layering

ggplot()

Sets a blank canvas

d_sum %>% ggplot()

Specifies the data (but don't know what to do with it yet)

Specifies a **mapping** to the plot **aes**thetics (in this case, the x and y axis)

Add a **plot** layer (the points, lines, bars, histograms, etc)

Add aesthetics to the **plot** layer

Technical: R

```
d_sum %>%
ggplot(
mapping = aes(x = year,
    y = mnKills)) +
geom_col(colour="black",
    fill="lightblue") +
geom_errorbar(
mapping = aes(ymin = mnKills-sderrKills,
    ymax = mnKills+sderrKills),
width=0.2)
```


Add another plot layer with its own mapping and aesthetics

Technical: R

```
d_sum %>%
ggplot(
mapping = aes(x = year,
    y = mnKills)) +
geom_col(colour="black",
    fill="lightblue") +
geom_errorbar(
mapping = aes(ymin = mnKills-sderrKills,
    ymax = mnKills+sderrKills),
width=0.2) +
theme_bw()
```


Modify the theme to make it look nicer...

Technical: R

```
d sum %>%
  gqplot(
    mapping = aes(x = year),
      y = mnKills)) +
  geom_col(colour="black",
           fill="lightblue") +
  geom_errorbar(
   mapping = aes(ymin = mnKills-sderrKills,
                ymax = mnKills+sderrKills),
    width=0.2) +
  theme_bw() +
  labs(title = "Zombie kills by year",
    x = "Year",
    y = "Mean number of kills")
```


Add title and labels

Skills for good data visualisation

Technical

Good tools combine ease & power In R, ggplot & tidyverse are great

Active, critical, aesthetic

- Guided by scientific questions
- Some tips to get you started

Break down your data: don't just summarise!

```
d_sum2 <- d %>%
group_by(year,zombie) %>%
summarise(mnKills = mean(kills),
    sdKills = sd(kills),
    n = n(),
    sderrKills = sdKills/sqrt(n)) %>%
ungroup()
```


Aesthetic choices should visualise important things

```
d_sum2 %>%
ggplot(mapping = aes(x = year,
    y = mnKills,
    fill = zombie)) +
geom_col(colour="black") +
theme_bw() +
labs(title = "Zombie kills by year",
    x = "Year",
    y = "Mean number of kills")
```


Faceting (making multiple panels) is GREAT!

```
d_sum2 %>%
ggplot(mapping = aes(x = year,
    y = mnKills,
    fill = zombie)) +
geom_col(colour="black",
        show.legend=FALSE) +
geom_errorbar(
    mapping = aes(ymin = mnKills-sderrKills,
        ymax = mnKills+sderrKills),
    width=0.2) +
facet_wrap(~zombie) +
theme_bw() +
labs(title = "Zombie kills by year",
    x = "Year",
    y = "Mean number of kills")
```

Zombie kills by year

Show distributions, not just summary stats

```
d_sum2 %>%
  ggplot(mapping = aes(x = year),
      y = mnKills,
      fill = zombie)) +
  geom_point(data=d,
             mapping=aes(x=year,y=kills,
                         colour=zombie),
             alpha=0.7, show.legend=FALSE) +
  geom_col(colour="black",
           alpha=0.4,
           show.legend=FALSE) +
  geom_errorbar(
    mapping = aes(ymin = mnKills-sderrKills,
                  ymax = mnKills+sderrKills),
    width=0.2) +
  facet_wrap(~zombie) +
  theme_bw() +
  labs(title = "Zombie kills by year",
    x = "Year",
    y = "Mean number of kills")
```

Zombie kills by year

Look at individuals, not just the aggregate

Use the tools at your disposal to get ideas and look at things in multiple ways

	Available CRAN Packages By Name					
	ABCDEFGHIJKLMNOPQRSTUVWXYZ					
<u>A3</u>	Accurate, Adaptable, and Accessible Error Metrics for Predictive Models					
aaSEA	Amino Acid Substitution Effect Analyser					
AATtools	Reliability and Scoring Routines for the Approach-Avoidance Task					
ABACUS	Apps Based Activities for Communicating and Understanding Statistics					
abbreviate	Readable String Abbreviation					
abbyyR	Access to Abbyy Optical Character Recognition (OCR) API					
abc	Tools for Approximate Bayesian Computation (ABC)					
<u>abc.data</u>	Data Only: Tools for Approximate Bayesian Computation (ABC)					
ABC.RAP	Array Based CpG Region Analysis Pipeline					
abcADM	Fit Accumulated Damage Models and Estimate Reliability using ABC					
ABCanalysis	Computed ABC Analysis					
abelass	Angle-Based Large-Margin Classifiers					
ABCoptim	Implementation of Artificial Bee Colony (ABC) Optimization					

R contains many packages (always being added) — you don't need to reinvent the wheel!

Nordmann E, McAleer P, Toivo W, Paterson H, DeBruine LM. Data Visualization Using R for Researchers Who Do Not Use R. *Advances in Methods and Practices in Psychological Science*. April 2022. doi:10.1177/25152459221074654

Use the tools at your disposal to get ideas and look at things in multiple ways

Violin plot + Bar plot + Means with errors + Sensible grouping

Use the tools at your disposal to get ideas and look at things in multiple ways

Interaction plots are easy, including by participant

• Use the tools at your disposal to get ideas and look at things in multiple ways

Raincloud plots are a beautiful way of viewing distributions and overlap

Use the tools at your disposal to get ideas and look at things in multiple ways

Ridge plots are good when you have a lot of distributions you want to compare

Use the tools at your disposal to get ideas and look at things in multiple ways

Alluvial plots let you look at change over time

• Use the tools at your disposal to get ideas and look at things in multiple ways

Heatmaps are often way better than correlation tables for identifying patterns

corrplot

Figures are even useful when you're just doing assumption checks and diagnostics!

Normality of Residuals Dots should fall along the line

Fitted values

performance::compare_performance()

Take-home points

- Data visualisation isn't just for communication, it's an essential part of the discovery process
- Do lots of things, lots of ways
- Have fun!

